If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k+10-4k^2=0
a = -4; b = 8; c = +10;
Δ = b2-4ac
Δ = 82-4·(-4)·10
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{14}}{2*-4}=\frac{-8-4\sqrt{14}}{-8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{14}}{2*-4}=\frac{-8+4\sqrt{14}}{-8} $
| 0.2x=100.2x=10 | | (x+0.5)2=2.25 | | 7.5x(6.6=x+19.8 | | 6(3x-4)=6x | | 5(x+2)-17=63 | | 6x-4=9x+7 | | x^2+9x-21=5x | | 8x+8=16x-11 | | 14x^2+9x+10=0 | | 3=1/2d-2 | | 2=1/2d-2 | | 1/3y-2=1/2y+4 | | -3x+6x=-3 | | 1=1/2v-2 | | 10(x+1)=4(x+7)+6 | | 17+b=b–4+7b | | X+.03x=600 | | 4+2*x=19 | | 165=13-y | | 7r=108-5r | | 5^r/2=125 | | 3.4y+7.3=y+54.6 | | 11=2m+7 | | 16(2x-3)=8x | | 9=2j+7 | | 3(x-1)-8=4(1+x+5 | | 31=6r+1 | | 4x-9=3x+16 | | 3y=-7×+8 | | 7.3y(3.4)=y+54.6 | | Y=8.25x+100 | | 7r=48-5r |